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1 Hyperbolic geometry

János Bolyai (1802-1860), Carl Friedrich Gauss (1777-1855), and Nikolai Ivanovich Lobachevsky
(1792-1856) are three founders of non-Euclidean geometry.

Hyperbolic geometry is, by definition, the geometry that assume all the axioms for
neutral geometry and replace Hilbert’s parallel postulate by its negation, which is called the
hyperbolic axiom.

Hyperbolic axiom (Negation of Hilbert axiom). There exists a line l and a point P
not on l such that at least two distinct lines parallel to l pass through P .

Theorem 1.1. In hyperbolic geometry, all triangles have angle sum less than 180◦, and all
convex quadrilaterals have angle sum less than 360◦. In particular, there is no rectangle.

Proof. Trivial.

Theorem 1.2 (Universal Hyperbolic Theorem). In hyperbolic geometry, for every line l and
every point P not on l there pass through P at least two distinct lines parallel to l. In fact
there are infinitely many lines parallel to l through P .
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Figure 1: Existence of infinite parallels

Proof. Drop segment PQ perpendicular to l with foot Q on l. Erect line m at P perpendicular
to PQ. Then l,m are parallel. Pick a point R on l other than Q, and erect line t at R
perpendicular to l. Drop line n through P perpendicular t, intersecting t at S. If S is on
m, then S is the intersection m and t, and subsequently ¤PQRS is a rectangle, which is
impossible in hyperbolic geometry. So point S is not on m. Hence m,n are distinct lines
through P , both are parallel to l. See Figure 1.

Let R′ be point on l other than Q,R, and t′ be line through R′ perpendicular to l. There
exists line n′ through P perpendicular to t′, intersecting t′ at S ′. If PS = PS ′, then ¤RR′S ′S
is a rectangle, which is impossible. So PS, PS ′ are distinct lines. Thus for all points R on l
other than Q, the lines PS through P perpendicular to l are all distinct.
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Definition 1. Two triangles are ∆ABC and ∆A′B′C ′ said to be similar if their vertices
can be put in on-to-one correspondence so that corresponding angles are congruent, i.e.,
∠A, ∠B, ∠C are congruent to angles ∠A′, ∠B′, ∠C ′ respectively.

Theorem 1.3 (AAA criterion for congruence of hyperbolic triangles). In hyperbolic geom-
etry, if two triangles are similar then they are congruent.
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Figure 2: Similar triangles are congruent in hyperbolic geometry

Proof. Given similar triangles ∆ABC and ∆A′B′C ′. Suppose the statement is not true, i.e.,
∆ABC is not congruent to ∆A′B′C ′. Then AB 6∼= A′B′, AC 6∼= A′C ′, BC 6∼= B′C ′; otherwise
∆ABC ∼= ∆A′B′C ′ by ASA. We may assume AB < A′B′ and AC < A′C ′. Lay off segment
AB on ray r(A′, B′) to have point B′′ such that AB ∼= A′B′′ and A′ ∗ B′′ ∗ B′, and lay off
segment AC on ray r(A′, C ′) to have point C ′′ such that AC ∼= A′C ′′ and A′ ∗ C ′′ ∗ C ′. See
Figure 2. Then ∆ABC ∼= ∆A′B′′C ′′ by SAS. Hence

∠A′B′′C ′′ ∼= ∠B ∼= ∠B′, ∠A′C ′′B′′ ∼= ∠C ∼= ∠C ′.

It follows that lines B′′C ′′, B′C ′ are parallel because of Congruent Corresponding Angles. So
¤B′C ′C ′′B′′ is a convex quadrilateral. Since angles ∠A′B′′C ′′, ∠B′B′′C ′′ are supplementary,
angles ∠A′C ′′B′′, ∠C ′C ′′B′′ are supplementary, and ∠B′ ∼= ∠A′B′′C ′′, ∠C ′ ∼= ∠A′C ′′B′′, then
the angle sum of ¤B′C ′C ′′B′′ is 360◦. This is a contradiction.

Theorem 1.3 says that in hyperbolic geometry it is impossible to magnify or shrink
a triangle without distortion. So in hyperbolic world photography would be inherently
surrealistic.

Another consequence of Theorem 1.3 is that the length of a segment may be determined
by angles in hyperbolic geometry. For example, an angle of an equilateral triangle determines
the length of a side uniquely. This fact is sometimes referred to that hyperbolic geometry
has an absolute unit length.

2 Parallels that admit a common perpendicular

Given lines l, l′ and points A,B,C, . . . on l. Drop perpendiculars AA′, BB′, CC ′, . . . from
A,B,C, . . . to l′ with feet A′, B′, C ′, . . . on l′ respectively. We say that A,B,C, . . . are
equidistant from l′ if all these perpendicular segments are congruent to one another. See
Figure 3.

Theorem 2.1 (At most two points equidistant). Given two distinct parallels l, l′ in hyperbolic
geometry. Then any set of points on l equidistant from l′ contains at most two points.

Proof. Suppose it is not true, i.e., there is a set of three points A,B,C on l equidistant from
l′. Then quadrilaterals ¤ABB′A′, ¤ACC ′A′, ¤BCC ′B′ are Saccheri quadrilaterals (the base
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Figure 3: No more than two equidistant points between two parallels

angles are right angles and the sides are congruent). Then the summit angles of the Saccheri
quadrilaterals are congruent, i.e.,

∠BAA′ ∼= ∠ABB′, ∠CAA′ ∼= ∠ACC ′, ∠CBB′ ∼= ∠BCC ′.

Thus ∠ABB′ ∼= ∠CBB′. Since ∠ABB′, ∠CBB′ are supplementary, they must be right
angles. Hence all ¤ABB′A′, ¤ACC ′A′, ¤BCC ′B′ are rectangles, which is impossible.

Lemma 2. Given a Saccheri quadrilateral ¤ABB′A′ with base right angles ∠A′, ∠B′ and
equal opposite sides AA′, BB′. Let M,M ′ be the middle points of AB, A′B′ respectively.
Then segment MM ′ is perpendicular to both lines AB and A′B′.

Proof. Draw segments A′M and B′M . Note that AA′ ∼= BB′, ∠A ∼= ∠B, and AM ∼= BM .
Then ∆A′AM ∼= ∆B′BM by SAS. So A′M ∼= B′M . Hence ∆A′MM ′ ∼= ∆B′MM ′ by
SSS. We then have ∠A′M ′M ∼= ∠B′M ′M . Subsequently, ∠A′M ′M and ∠B′M ′M are right
angles. So MM ′ is perpendicular to the base A′B′. Note that ∠A′MM ′ ∼= ∠B′MM ′ and
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Figure 4: Perpendicular middle point segment

∠AMA′ ∼= ∠BMB′. Then ∠AMM ′ ∼= ∠BMM ′ by angle addition. Subsequently, ∠AMM ′

and ∠BMM ′ are right angles. So MM ′ is perpendicular to the summit AB.

Theorem 2.2 (Divergent and symmetric parallels). Let l, l′ be two lines perpendicular to a
segment MM ′ with M ∈ l,M ′ ∈ l′.

(a) Then |MM ′| < |XY ′| for all X ∈ l, Y ′ ∈ l′ with XY ′ 6= MM ′.
(b) If M is the middle point of a segment AB on l, then A,B are equidistant from l′.
(c) If M ∗B ∗D on l and BB′, DD′ are segments perpendicular to l′ with feet B′, D′ ∈ l′,

then BB′ < DD′.

Proof. (a) It is clear that MM ′ < MY ′ for all Y ′ on l′ with Y ′ 6= M ′. Let X be a point on l
with X 6= M . Let XX ′ be segment perpendicular to l′ with foot X ′ on l′. Then ¤MM ′XX ′

is a Lambert quadrilateral. Thus
MM ′ < XX ′

by properties of Lambert quadrilaterals. Since XX ′ < XY ′ for Y ′ on l′ with Y ′ 6= X ′. We
see that MM ′ < XY ′.

(b) Let AA′, BB′ be segments perpendicular to l′ with A′, B′ ∈ l′. Draw segments AM ′

and BM ′. Then ∆AMM ′ ∼= ∆BMM ′ by SAS. So AM ′ ∼= BM ′ and ∠AM ′M ∼= ∠BM ′M .
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Figure 5: Divergent parallels are symmetric

Subsequently, ∠AM ′A′ ∼= ∠BM ′B′ by angle subtraction. Thus ∆AA′M ′ ∼= ∆BB′M ′ by
SAA. Hence AA′ ∼= BB′ and A′M ′ ∼= B′M ′.

(c) Note that ¤M ′B′BM and ¤M ′D′DM are Lambert quadrilaterals. Then ∠B′BM and
∠D′DM are acute angles. So ∠B′BD is obtuse, for it is supplementary to ∠B′BM . Hence
∠D′DB = ∠D′DM < ∠B′BD. Therefore BB′ < DD′ by the property of ¤B′D′DB.

Proposition 2.3 (Asymptotic and monotonic parallels). Given parallels l, l′ in hyperbolic
geometry, no two points of l are equidistant from l′. Let AA′, BB′, CC ′ be perpendicular
segments to l′ with A ∗B ∗ C on l and A′, B′, C ′ ∈ l′. See Figure 6.

(a) If AA′ < BB′, then BB′ < CC ′.
(b) If BB′ < CC ′, then AA′ < BB′.
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Figure 6: Monotone distance between asymptotic parallels

Proof. Consider quadrilaterals ¤A′B′BA and ¤B′C ′CB.
(a) Since AA′ < BB′, then ∠ABB′ < ∠BAA′. Since the angle sum of ¤A′B′BA is less

than 360◦, it follows that ∠ABB′ is acute. So ∠CBB′ is obtuse. Hence ∠BCC ′ must be
acute, since the angle sum of ¤B′C ′CB is less than 360◦. Of course ∠BCC ′ < ∠CBB′,
subsequently, BB′ < CC ′ by the property of ¤B′C ′CB.

(b) Fix a point D on l with A ∗B ∗C ∗D. For each X on the open ray r̊(D,A) we write
|DX| = x and define f(x) = |XX ′|, where XX ′ is perpendicular to l′ with foot X ′ on l′.
We claim that f(x) is a continuous function for x > 0. In fact, fix an x0 with point X0 on l
such that |BX0| = x0. Let X0X

′
0 be segment perpendicular to l′ with X ′

0 ∈ l′. Note that

|XX ′| ≤ |XX ′
0| ≤ |X0X

′
0|+ |XX0|, |X0X

′
0| ≤ |X0X

′| ≤ |XX ′|+ |XX0|.

Then

|f(x)− f(x0)| =

{ |XX ′| − |X0X
′
0| if |XX ′| ≥ |XX ′

0|
|X0X

′
0| − |XX ′| if |XX ′| < |XX ′

0|
≤ |XX0| = |x− x0|.

Clearly, f(x) is continuous at x0. So f(x) is a continuous function for x > 0.
Suppose AA′ > BB′. Note that AA′ 6∼= CC ′. If |AA′| < |CC ′|, by intermediate value

theorem there exists a Y with B ∗Y ∗C such that |Y Y ′| = |AA′|. Then A, Y are equidistant
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from l′, which is impossible. If |AA′| > |CC ′|, by intermediate value theorem there exists a
point Z with A ∗ Z ∗ B such that |ZZ ′| = |CC ′|. Then C, Z are equidistant from l′, which
is impossible.

We then must have AA′ < BB′.

3 Limiting parallel rays

Given a line l in hyperbolic geometry and a point P not on l. Let m be a line through P
parallel to l with left ray r(P,R). Drop perpendicular segment PQ to l with foot Q on l.
We consider rays between r(P,Q) and r(P,R), and want to find the critical ray r(P,X),
called the left limiting parallel ray to l through P , that does not meet l but any ray
between r(P,X) and r(P,Q) meets l. Likewise, there is a right limiting parallel ray to
l through P on the opposite side of PQ. See Figure 7.

Theorem 3.1. Given a line l and a point P not on l in hyperbolic geometry. Let PQ
be segment perpendicular to l with foot Q on l. Then there exist two non-opposite rays
r(P,X), r(P,X ′) on opposite sides of line PQ, satisfying the properties:

(a) Each of rays r(P,X), r(P,X ′) does not meet l.
(b) A ray r(P, Y ) meets l if and only if it is between r(P,X) and r(P,X ′).
(c) ∠QPX ∼= ∠QPX ′.

Proof. Let m be the line through P perpendicular to PQ. Pick a point R on the left side of
m and a point R′ on the right side of m separated by P . Draw segments QR and QR′. Then
all rays between r(P,Q) and r(P,R) inclusive are represented by r(P, Y ) with Y ∈ QR. See
Figure 7.
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Figure 7: Limiting parallel rays

(a) Let Σ1 be the set of points Y ∈ r(Q,R) such that the ray r(P, Y ) does not meet l,
and Σ2 the complement of Σ1 in QR. It is easy to see that both Σ1, Σ2 are convex. So Σ1, Σ2

form a Dedekind cut of QR. Then there exists a unique point X ∈ QR such that Σ1, Σ2

are two rays (one of them is an open ray) of QR separated by X. We claim that X ∈ Σ1.
Suppose X ∈ Σ2, i.e., r(P,X) meets l at S. Pick a point T on l such that T ∗ S ∗Q. Then
ray r(P, T ) is between r(P,R) and r(P,X). So r(P, T ) meets RQ at U and R ∗ U ∗X, i.e.,
U ∈ Σ2, which is a contradiction. The existence of ray r(P,X ′) is analogous.

(b) Since R ∈ Σ1 and Q ∈ Σ2, we see that R ∗X ∗Q. It is obvious that if a ray r(P, Y )
is contained in the open half-plane opposite to H̊(m,Q) then r(P, Y ) does not meet l. We
then see that a ray r(P, Y ) meets l if and only if r(P, Y ) is between r(P,X) and r(P,X ′).

(c) Suppose that ∠XPQ is not congruent to ∠X ′PQ, say, ∠XPQ < ∠X ′PQ. Find point
V ′ on l such that r(P, V ′) is between r(P,Q) and r(P,X ′), and ∠QPV ′ ∼= ∠QPX. Mark
a point V on l such that V ∗ Q ∗ V ′ and QV ∼= QV ′. Then ∆PQV ∼= ∆PQV ′ by SAS. So
∠QPV ∼= ∠QPV ′ ∼= ∠QPX , i.e., r(P,X) meets l at V , which is a contradiction.
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The angle ∠QPX is called the angle of parallelism at point P with respect to l, its
degree measure is denoted Π(PQ)◦. We have

Π(PQ)◦ < 90◦.

4 Classification of parallels

Theorem 4.1. Given parallel lines l, l′ in hyperbolic geometry.
(a) If l contains a limiting parallel ray to l′, then l, l′ are asymptotic parallels.
(b) If l does not contain limiting parallel ray to l′, then l, l′ are divergent parallels.
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Figure 8: The limiting parallel ray is asymptotic and monotonic

Proof. Fix a point P not on l′ and drop a perpendicular PQ to l′ with foot Q ∈ l′. Let m
be the line through P perpendicular to PQ. Pick a point R on m other than P . Let r(P,X)
be a limiting parallel ray to l′ with X ∈ QR. See Figure 8.

(a) Let A,B,C,D be points on l with A ∗ B ∗ P ∗ C ∗ D and A,B ∈ r̊(P,X). Let
AA′, BB′, CC ′, DD′ be segments perpendicular to l′ with feet A′, B′, C ′, D′ ∈ l′. Note that
∠XPQ is acute, ∠CPQ is obtuse, and the angle sum of ¤PQC ′C is less than 360◦. Then
∠PCC ′ is acute. Of course ∠PCC ′ < ∠CPQ. So PQ < CC ′ by property of quadrilaterals
with two base right angles.

Analogously, ∠PDD′ is acute and ∠DCC ′ is obtuse. Of course ∠PDD′ < ∠DCC ′.
Then CC ′ < DD′ by property of quadrilaterals with two base right angles.

We claim |AA′| ≤ |PQ| for all A on open ray r̊(P,X). Suppose |AA′| > |PQ|. Let
S be a point on AA′ such that |AS| = 1

2
(|AA′| − |PQ|). Clearly, |SA′| > |PQ|. Then

∠A′SP < ∠XPQ by property of quadrilateral with two base right angles. Of course ∠A′SP
is acute. Since r(P, S) is between r(P,Q) and r(P,X), the ray r(P, S) meets l′ at T . Note
that ∠A′ST is acute. So ∠A′SP is obtuse, contradicting to that ∠A′SP is acute.

We further claim AA′ < BB′ for two points A,B on closed ray r(P,X) with A ∗ B ∗ C.
Suppose |AA′| ≥ |BB′|. There exists a point E on BP (maybe B = P ) such that AA′ ∼= EE ′

by continuity of distance function. Let M,M ′ be the middle points of AE, A′E ′ respectively.
Then l, l′ are divergent parallels. Let F be on l such that F ∗M ∗ C and MF ∼= MC. We
have |FF ′| = |CC ′| > |PQ|, which is a contradiction.

(b) Assume that l does not contain any limiting parallel ray. If l = m, then l, l′ are
already divergent parallels. If l 6= m, we may assume that a ray r(P, Y ) of l is between
r(P,R) and r(P,X), where R ∗ Y ∗X. It is easy to see that PQ < CC ′ < DD′ by similar
arguments.

Since ∠XPY is acute, by Aristotle’s axiom there exists a point A on r(P, Y ) such that
AE > PQ, where AE is perpendicular to r(P,X) with foot E ∈ r(P,X). Of course AA′ >
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Figure 9: Non-limiting parallel ray is symmetric

AF > AE. So AA′ > PQ. Thus l, l′ cannot be asymptotic (monotonic) parallels. So l, l′

must be divergent (symmetric) parallels.

Let A,A′ be two distinct points on the same side of a line AB such that lines AA′, BB′

are parallel. Then the figure, consisting of the segment AB (called the base) and the rays
r(A,A′) and r(B, B′) (called the sides), is called a biangle with vertices A and B, denoted
∠A′ABB′. See Figure 10. The interior of biangle ∠A′ABB′ is

∠̊A′ABB′ := ∠̊A′AB ∩ ∠̊ABB′.

If P ∈ ∠̊A′ABB′, either of rays r(A,P ), r(B, P ) is called an interior ray of ∠DABC. If

P
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E

G F

A’

B’

Q

Figure 10: Biangle and limiting parallel

each interior ray r(A,P ) intersects r(B, B′), we say that r(A,A′) is limiting parallel to
r(B, B′) and that biangle ∠A′ABB′ is closed at A, written r(A,A′) · r(B, B′).

Lemma 3. Let ∠A′ABB′ be a biangle. See Figure 10.
(a) If D ∗ A ∗ A′, then r(D,A′) · r(B, B′) if and only if r(A,A′) · r(B, B′).
(b) If r(A,A′) · r(B, B′), so is r(B, B′) · r(A,A′).

Proof. (a) Assume r(D,A′) · r(B, B′). Take a point P in the interior of ∠A′ABB′. It is
clear that P is an interior point of biangle ∠A′DBB′. Then r(D,P ) meets r(B, B′) at F
since ∠A′DBB′ is closed at D. Note that P is an interior point of ∠BAF . Then r(A,P ) is
between r(A,B) and r(A,F ). Thus r(A,P ) meets BF at G with B ∗ G ∗ C. By definition
r(A,A′) · r(B, B′).

Conversely, assume r(A,A′) · r(B, B′). For each ray r between r(D,B) and r(D,A′),
we have r meeting AB at E between A and B. Pick a point P on r such that D∗E ∗P . Note
that ∠A′AB > ∠AED ∼= ∠BEP . There is a ray r(A,Q) such that ∠BAQ ∼= ∠BEP . Then
r(A,Q)‖r(E, P ). Since r(A,Q) meets r(B, B′), we see that r(E, P ) must meet r(B, B′), i.e.,
r(D,P ) meet r(B, B′). Hence ∠A′DBB′ is closed at D.

(b) Given an interior point P ∈ ∠ÅBB′ and consider the ray r(B, P ). Suppose r(B, P )
does not meet r(A,A′). By the corollary of Aristotle’s axiom there exists a point Q on
r(B, P ) such that ∠AQB < ∠PBB′. See Figure 11. Note that r(A,Q) meets r(B, B′) at
C. Then we have triangle ∆BCQ. Thus ∠AQB > ∠QBC = ∠PBB′, which contradicts
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Figure 11: Biangle and limiting parallel

∠AQB < ∠PBB′. So r(B, P ) must meet r(A,A′). Hence ∠A′ABB′ is closed at B, i.e.,
r(B, B′) · r(A,A′).

Proposition 4.2 (Transitivity of limiting parallelism). If both rays r(A,A′) and r(B, B′)
are limiting parallel to ray r(C, C ′), then r(A,A′) and r(B, B′) are limiting parallel to each
other.
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Figure 12: Limiting parallels

Proof. Case 1. Lines AA′ and BB′ are on opposite sides of line CC ′. See Figure 12.
It is clear that r(A,A′) and r(B, B′) have no point in common. Let AB meet CC ′ at D.

We may assume C ∗D ∗C ′. Now for each point P interior to ∠A′AB, the ray r(A,P ) meets
r(C, C ′) at E since r(A,A′) · r(C, C ′). We may assume C ∗ E ∗ C ′. Then r(E, E ′) meets
r(B, B′) at F since r(C, C ′) · r(B, B′), where E ∗E ′ ∗F . Hence r(A,A′) meets r(B, B′) at
F . Therefore by definition r(A,A′) and r(B, B′) are limiting parallel to each other.

Case 2. Lines AA′ and BB′ are on the same side of line CC ′.

C

B

A B’
D

A’D’

C’

Figure 13: Limiting parallels

We first claim that AA′ and BB′ do not meet. Suppose AA′ and BB′ meet at point
D. We may assume that D belongs to both rays r(A,A′), r(B, B′), and assume A ∗D ∗ A′,
B ∗ D ∗ B′. Take a point D′ such that A ∗ D ∗ D′. Then r(D,D′) meets r(C, C ′) since
r(D,B′) · r(C, C ′), i.e., r(A,A′) meets r(C, C ′), which is a contradiction. See Figure 13.

Let AC meet BB′ at point D. We may assume B ∗ D ∗ B′. For each point P interior
to ∠A′AC, the ray r(A,P ) meets r(C, C ′) at point E. Since r(B, D) (= r(B, B′)) meets
the triangle ∆DCE, the ray r(B, B′) meets either AE or CE. Since r(B, B′) does not meet
r(C, C ′), so r(B, B′) meet AE at F such that A ∗F ∗E. For point P interior to ∠BAD, the
ray r(A,P ) meets BD between B and D, of course r(A,P ) meets r(B, B′). Hence r(A,A′)
and r(B, B′) are limiting parallel to each other.
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Figure 14: Limiting parallels

Two rays r, s are said to be limiting parallel, denoted r q s, if r ⊂ s or s ⊂ r or r · s.
Then q is an equivalence relation on rays in hyperbolic geometry. An equivalence class of rays
is called an ideal point or end, viewing it lying on each ray contained in the equivalence
class. Since a point on a line separates the line into two opposite rays, and opposite rays are
not equivalent, we see that every line has two ends on it.

If A,B are vertices of two rays r, s with r · s. Let R denote the ideal point determined
by these rays, i.e., R = [r] = [s]. We write r = AR and s = BR and refer to the closed
biangle with side r, s as a singly asymptotic triangle ∆ABR. We shall see that these
triangles have some properties in common with ordinary triangles.

Lemma 4. In hyperbolic geometry if two lines l, m are cut by a line t such that the alternate
interior angles are congruent, then l,m are divergent parallels.

Q

t

l

m
P’

Q’ P

Figure 15: Asymptotic triangle

Proof. Let t meet l at P and meet m at Q such that ∠Q′PQ ∼= ∠P ′QP , where PP ′ is
perpendicular to m with foot P ′ on m and QQ′ is perpendicular to l with foot Q′ on l. Then
∆PQQ′ ∼= ∆QPP ′. So PP ′ ∼= QQ′. Hence l, m are divergent parallel lines.

Proposition 4.3. Let ∆ABR be a singly asymptotic triangle with a single ideal point R.
Then the exterior angles at A,B are greater than their respective opposite interior angles,
i.e., ∠A < ext ∠B.

D

A’A

B’
B

C

R

E

Figure 16: Asymptotic triangle
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Proof. Extend AB to C such that A ∗B ∗C. Draw ray r(B, D) such that ∠CBD ∼= ∠BAA′

and extend DB to E such that E ∗ B ∗ D. Then ∠ABE ∼= ∠CBD ∼= ∠BAA′. Thus
lines BD, AA′ are divergent parallels. Since r(B, B′) · r(A,A′), we see that r(B, D) 6=
r(B, B′). If r(B, D) is between r(B, B′) and r(B, A), then r(B, D) meets r(A,A′), which is
a contradiction. So we must have r(B, D) between r(B, C) and r(B, B′). This means that
∠CBD < ∠CBB′, i.e., ∠CBB′ > ∠BAA′.
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